CD44 regulates arteriogenesis in mice and is differentially expressed in patients with poor and good collateralization.
نویسندگان
چکیده
BACKGROUND Arteriogenesis refers to the development of collateral conductance arteries and is orchestrated by circulating monocytes, which invade growing collateral arteries and act as suppliers of cytokines and growth factors. CD44 glycoproteins are involved in leukocyte extravasation but also in the regulation of growth factor activation, stability, and signaling. Here, we explored the role of CD44 during arteriogenesis. METHODS AND RESULTS CD44 expression increases strongly during collateral artery growth in a murine hind-limb model of arteriogenesis. This CD44 expression is of great functional importance, because arteriogenesis is severely impaired in CD44-/- mice (wild-type, 54.5+/-14.9% versus CD44-/-, 24.1+/-9.2%, P<0.001). The defective arteriogenesis is accompanied by reduced leukocyte trafficking to sites of collateral artery growth (wild-type, 29+/-12% versus CD44-/-, 18+/-7% CD11b-positive cells/square, P<0.01) and reduced expression of fibroblast growth factor-2 and platelet-derived growth factor-B protein. Finally, in patients with single-vessel coronary artery disease, the maximal expression of CD44 on activated monocytes is reduced in case of impaired collateral artery formation (poor collateralization, 1764+/-572 versus good collateralization, 2817+/-1029 AU, P<0.05). CONCLUSIONS For the first time, the pivotal role of CD44 during arteriogenesis is shown. The expression of CD44 increases during arteriogenesis, and the deficiency of CD44 severely impedes arteriogenesis. Maximal CD44 expression on isolated monocytes is decreased in patients with a poor collateralization compared with patients with a good collateralization.
منابع مشابه
CD44 Regulates Arteriogenesis in Mice and Is Differentially Expressed in Patients With Poor and Good Collateralization
Background—Arteriogenesis refers to the development of collateral conductance arteries and is orchestrated by circulating monocytes, which invade growing collateral arteries and act as suppliers of cytokines and growth factors. CD44 glycoproteins are involved in leukocyte extravasation but also in the regulation of growth factor activation, stability, and signaling. Here, we explored the role o...
متن کاملEvaluation of Stem Cell Markers, CD44/CD24 in Breast Cancer Cell Lines
Background Cancer stem cells play crucial roles in resistance to therapeutic schemes and relapse of disease, so it is important to find targeted therapies that kill them selectively. Breast cancer is the most common cancer in females living in all part of the world including Iran and it has an important burden in public health with direct impact on patients’ families. Breast cancer in young ad...
متن کاملO-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development
Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...
متن کاملAlpha-synuclein induced apoptosis and proliferation interacted with CD44 in human lymphocytes
Human ?-synuclein is a 140 amino acid protein with little or no secondary structure. The ?-synuclein is expressed at high levels in the brain and enriched in neural synaptic terminals but its physiological function remains largely unknown. More recently, ?-synuclein has been shown to be one of the principal componets of Lewy bodies, neuronal inclusions that are found in diverse human neurodegen...
متن کاملO-8: Critical Role of Hyaluronan System in Pre-Implantation Embryo Development and Establishment of Pregnancy
Background: Hyaluronan (HA) is a structural component of extracellular matrix synthesised by HA synthases HAS1-3, which produce HA of different molecular sizes with distinct biological functions associated with reproductive processes. Hyaluronidase (HYAL) cleaves the HA into biologically active small fragments which are known to regulate cell proliferation through CD44 receptor signaling. HA is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 109 13 شماره
صفحات -
تاریخ انتشار 2004